<sup id="jx83v"><rt id="jx83v"></rt></sup>
      1. <cite id="jx83v"></cite>

            <sup id="jx83v"></sup>
            久久久一本精品99久久精品77,久久香蕉超碰97国产精品,乱码中文字幕,国产麻豆精品手机在线观看,亚洲日韩国产欧美一区二区三区,亚洲欧美日韩成人高清在线一区,人妻AV无码系列一区二区三区,国产激情综合五月久久
             

            武漢大學(xué)羅玉峰研究團(tuán)隊(duì)發(fā)表智慧灌溉決策最新研究成果

            論文的題目是《基于天氣預(yù)報(bào)的水稻灌溉決策強(qiáng)化學(xué)習(xí)方法》。

            A reinforcement learning approach to irrigation decision-making for rice using weather forecasts

            Mengting Chen, Yufeng Luo




            文章介紹了在智能灌溉決策方面的最新進(jìn)展。歡迎下載引用詳見:https://www.sciencedirect.com/science/article/pii/S0378377421001037

            文章發(fā)表在科學(xué)導(dǎo)報(bào)ScienceDirect 上:https://doi.org/10.1016/j.agwat.2021.106838


            文章要點(diǎn)

            提出并驗(yàn)證了灌溉決策的一種強(qiáng)化學(xué)習(xí)方法。

            通過(guò)明智的學(xué)習(xí)方法解決利用灌溉經(jīng)驗(yàn)和天氣預(yù)報(bào)的不確定性的問(wèn)題。

            該方法能在不損失產(chǎn)量的前提下節(jié)約灌溉水量,縮短灌溉時(shí)間。

            所提出的灌溉強(qiáng)化學(xué)習(xí)方法對(duì)于智能灌溉實(shí)踐具有很好的應(yīng)用前景。


            論文摘要

            充分利用降雨提高農(nóng)業(yè)用水效率是農(nóng)業(yè)節(jié)水的有效途徑之一。當(dāng)前,天氣預(yù)報(bào)可以用于潛在地節(jié)約灌溉用水,但應(yīng)避免不必要灌溉的風(fēng)險(xiǎn)和由于天氣預(yù)報(bào)的不確定性造成的,可能存在的產(chǎn)量損失。為此,提出了一種基于短期天氣預(yù)報(bào)的深度Q學(xué)習(xí)灌溉決策策略。以南昌地區(qū)水稻為例,驗(yàn)證了該方法的實(shí)用性。收集了南昌附近臺(tái)站2012-2019年水稻生育期的短期天氣預(yù)報(bào)和觀測(cè)氣象資料。比較了常規(guī)灌溉和DQN灌溉兩種灌溉決策策略,并對(duì)其節(jié)水效果進(jìn)行了評(píng)價(jià)。結(jié)果表明,該模型的日降水預(yù)報(bào)性能良好,具有潛在的學(xué)習(xí)和開發(fā)空間。DQN灌溉策略訓(xùn)練后具有較強(qiáng)的泛化能力,可用于利用天氣預(yù)報(bào)進(jìn)行灌溉決策。在我們的案例中,模擬結(jié)果表明,與傳統(tǒng)灌溉決策相比,DQN灌溉產(chǎn)生必要的節(jié)水優(yōu)勢(shì),灌溉節(jié)水23mm,排水量平均減少21mm,灌溉時(shí)間平均減少1.0倍,產(chǎn)量沒(méi)有明顯下降。DQN灌溉策略借鑒了過(guò)去的灌溉經(jīng)驗(yàn)和天氣預(yù)報(bào)的不確定性,避免了天氣預(yù)報(bào)不完善的風(fēng)險(xiǎn)。


            Highlights


            • A reinforcement learning approach for irrigation decision-making is proposed and tested.

            • Past irrigation experiences and uncertainties of weather forecasts are intelligently learned.

            • The proposed method can conserve irrigation water and reduce irrigation time without yield loss.

            • The proposed reinforcement learning approach for irrigation is promising for smart irrigation practices.


            Abstract

            Improving efficiency with the use of rainfall is one of the effective ways to conserve water in agriculture. At present, weather forecasting can be used to potentially conserve irrigation water, but the risks of unnecessary irrigation and the yield loss due to the uncertainty of weather forecasts should be avoided. Thus, a deep Q-learning (DQN) irrigation decision-making strategy based on short-term weather forecasts was proposed to determine the optimal irrigation decision. The utility of the method is demonstrated for paddy rice grown in Nanchang, China. The short-term weather forecasts and observed meteorological data of the paddy rice growth period from 2012 to 2019 were collected from stations near Nanchang. Irrigation was decided for two irrigation decision-making strategies, namely, conventional irrigation (i.e., flooded irrigation commonly used by local farmers) and DQN irrigation, and their performance in water conservation was evaluated. The results showed that the daily rainfall forecasting performance was acceptable, with potential space for learning and exploitation. The DQN irrigation strategy had strong generalization ability after training and can be used to make irrigation decisions using weather forecasts. In our case, simulation results indicated that compared with conventional irrigation decisions, DQN irrigation took advantage of water conservation from unnecessary irrigation, resulting in irrigation water savings of 23 mm and reducing drainage by 21 mm and irrigation timing by 1.0 times on average, without significant yield reduction. The DQN irrigation strategy of learning from past irrigation experiences and the uncertainties in weather forecasts avoided the risks of imperfect weather forecasting.


            文章來(lái)源:http://irripro.com.cn/


            更多
            行業(yè)資訊
            產(chǎn)品分類
            主站蜘蛛池模板: 最新国产精品自在线观看| 精品人妻中文av一区二区三区| 日产幕无线码三区在线| 日本经典中文字幕人妻| 国产人无码a在线西瓜影音| 欧美另类与牲交zozozo| 亚洲av成人片色在线观看| 久久中文字幕日韩精品| 一二三四电影在线观看视频播放免费 | 亚洲色图综合在线| 美日韩不卡一区二区三区| 免费无码一区无码东京热| 国产精品自拍中文字幕| 人人玩人人添人人澡超碰| 麻花豆传媒剧a∨| 免费中文字幕在在线不卡| xbox免费观看高清视频的软件 | 精品久久久久久无码专区不卡 | 亚洲毛片多多影院| 97视频精品全国免费观看| 亚洲午夜性猛春交XXXX| 欧美日本韩国一区二区三区视频| 亚洲人成欧美中文字幕| 一本久久a久久精品亚洲| 日本丰满岳乱妇在线观看| 天堂在线中文| 国产乱人无码伦av在线a| 国产精品亚洲专区无码电影| av免费观看在线播放| 精品人妻少妇嫩草av专区| 妺妺窝人体色www聚色窝| 玩弄放荡人妇系列av在线网站| 脱了美女内裤猛烈进入| 狠狠色噜噜狠狠亚洲av| 18禁美女裸体爆乳无遮挡 | 少妇无码吹潮| 熟妇无码AV| 乱精品一区字幕二区| 无码国产精品一区二区免费vr| 真实单亲乱l仑对白视频| 久久精品99国产精品亚洲|